Measurements of Improved ElectricOIL Performance, Gain, and Laser Power

J. W. Zimmerman,1 G. F. Benavides,1,2 B. S. Woodard,1 D. L. Carroll,3 A. D. Palla,4 J. T. Verdeyen,5 and W. C. Solomon6

University of Illinois at Urbana-Champaign, Urbana, IL 61801

CU Aerospace, Champaign, IL 61820

Ongoing experiments have led to continued improvements in the Electric Oxygen-Iodine Laser (ElectricOIL) system that significantly increased the performance, gain, and laser power output. Experimental investigations utilize radio-frequency discharges in O2/He/NO mixtures in the pressure range of 30-60 Torr. The goal of these investigations was maximization of both the yield and flow rate (power flux) of O2(a'Δ) in order to produce favorable conditions for subsequent gain and lasing in our ElectricOIL system. Numerous measurements of O2(a'Δ), oxygen atoms, and discharge excited states are made to characterize the discharge. A gain of 0.22% cm⁻¹ was measured with a corresponding outcoupled power of 28 W. Modeling with the BLAZE-IV model is in good agreement with data and helps to guide our understanding of this complex hybrid laser system.

I. Introduction

The first demonstration of the electric oxygen-iodine laser (often referred to as ElectricOIL, EOIL, or DOIL) [Carroll, 2005a] was enabled through an understanding of the importance that oxygen atoms play in the kinetics of the discharge and post-discharge regions. Oxygen atoms play a positive role in that they rapidly dissociate the I2 molecule [Atkinson, 1997], but also play a negative role in that they quench the upper laser level [Azyazov, 2006] and also directly quench the singlet oxygen metastable O2(a'Δ) [denoted hereafter as O2(a)] through a three-body process [Rakhimova, 2003]. By controlling the atomic oxygen levels through the addition of small molar fractions of NO or NO2 it is possible to enhance the performance of the system in terms of the O2(a), the gain, and the laser power [Carroll, 2005a; Carroll, 2005b]. Ionin et al. [Ionin, 2007] provide a comprehensive topical review of discharge production of O2(a) and ElectricOIL studies. Over the past five years of research and development, continual improvements in O2(a) production, gain and lasing power have been obtained. In this paper we discuss recent discharge and configuration improvements that have led to more than two orders of magnitude enhancement in gain and laser power since our initial demonstration of 0.002% cm⁻¹ and 0.16 W, respectively, to 0.22% cm⁻¹ and 28 W (with a 5 cm gain length cavity).

II. Transverse Discharge Experiments

Recent experimental results have shown that, at moderate pressures of 40 to 100 Torr, the discharge production of O2(a) is increased by reducing the diameter of the discharge tube [Woodard, 2008; Zimmerman, 2008a]. A quartz tube with an outer diameter of 19 mm (3/4 in.) provided a substantial improvement over the 50 mm diameter tube at pressures above 30 Torr. All of the results reported here were taken using a parallel plate...
electrode configuration around a 19 mm tube. BLAZE-IV [Palla, 2006; Palla, 2007] modeling results (not shown for brevity) suggested that this was insufficient time for the O$_2$(a) to reach an equilibrium for its production. In order to test this theory, the discharge electrodes were lengthened along the tube. A 10 inch (previous standard length for our experiments), 20 inch, and 33 inch set of electrodes were created. The flow residence times in the 10", 20", and 33" discharges are approximately 1.8 ms, 3.3 ms, and 4.7 ms, respectively. The actual length of the discharge is obviously dependent on the length of the electrodes, but it also depends significantly on the discharge power and pressure. Figure 1 shows the O$_2$(a) yield and the actual discharge length versus power for each of the three electrode lengths. The pressure in all the cases shown in Figs. 1-4 is 40 Torr, and the flow rates are 10:33:0.2 of O$_2$:He:NO. At this pressure, the 10 in. discharge fills the electrodes for all the powers shown. The data in these figures was taken at a fixed distance downstream from the exit of each discharge. The yield reaches a higher value with the longer electrodes although more power is required to reach the peak O$_2$(a) yield as the electrodes are lengthened. The yield of O$_2$(b$^1\Sigma$) [denoted hereafter as O$_2$(b)] is shown in Fig. 2, and the trend is generally the opposite of the O$_2$(a). The O$_2$(b) yield decreases substantially from the 10 inch electrode case while the values for the 20 and 33 inch cases are similar. The higher O$_2$(b) yield in the 33 inch discharge as compared to the 20 inch discharge is unexpected; this phenomenon is still under investigation. The flow temperature derived from the rotational spectrum of the O$_2$(b) is given in Fig. 3. For a given input RF power, the resulting flow temperature depends little on the length of the discharge. This result implies that in order to take advantage of the higher O$_2$(a) yields provided by the longer discharge at higher powers, the flow will be hotter than in the lower yield case, which is a challenge that can be alleviated with a properly designed post-discharge heat exchanger (Sect. III). Figure 4 illustrates the yield of oxygen atoms produced by the discharge as the atom density divided by the input oxygen density. Similar to the temperature, the residence time within the discharge appears to have little impact on the production of oxygen atoms.

Increasing the flow’s residence time in the discharge produces more O$_2$(a) while creating less O$_2$(b) and approximately the same concentration of oxygen atoms. These results appear to be very encouraging and will be tested in the full laser system in the near future to determine if we observe enhancements in gain and lasing performance from the increases in O$_2$(a) yield.

Figure 1: O$_2$(a) yield and actual discharge length vs. RF power for three different electrode lengths at 40 Torr and flow rates of 10:33:0.2, O$_2$:He:NO.

Figure 2: O$_2$(b) yield vs. input RF power for three different electrode lengths at 40 Torr and flow rates of 10:33:0.2, O$_2$:He:NO.
III. Thermal Management

In the ElectricOIL system, the discharge exit flow temperature is typically in the range of 550 to 650 K, therefore it is important to properly engineer thermal management solutions for the ElectricOIL system. Since the equilibrium of the pumping reaction is temperature dependent, Eqs. (1) – (2), it is preferable to reduce the temperature to 300 K or less (a temperature comparable to classical COIL) before entering the supersonic nozzle and lasing cavity. Utilizing a supersonic cavity with a Mach 2.4 geometric profile, the resulting flow temperature is generally less than 150 K. A low flow temperature in the resonator region is desirable because of the reduction in the threshold $O_2(a)$ yield for optical transparency.

\[
O_2(a) + I \rightleftharpoons O_2 + I^* \\
Y_{OT} = \frac{1}{1 + 2K_{eq}} = \frac{1}{1 + 1.5 \exp(403/T)}
\]

Numerous methods of heat removal have been implemented or are in the process of being tested in our laboratory. Looking at ElectricOIL in a stepwise fashion, the first opportunity for heat removal is prior to the discharge. The gases being fed to the discharge may be pre-cooled to near liquid oxygen temperatures (~90 K). Because of the heat introduced into the discharge and the warm discharge tube walls, this technique does not result in a huge temperature benefit following the discharge. A discharge exit temperature drop of approximately 20 K was measured experimentally. Because other techniques to cool the discharge gases have proven more effective (discussed below) this method has not been used in the ElectricOIL laser beyond a handful of experimental studies.

Next, the discharge itself may be cooled. An effective approach may be to water cool each electrode by installing channels within the electrodes. This proved effective in a low power system used by Rakhimova et al. [Rakhimova, 2003]. Hill [Hill, 2007] has reported success cooling his discharge array with non-conductive chilled liquid fluorinert, reporting a discharge exit temperature in the area of 398 K. An older version of ElectricOIL, which utilized a 2’’ diameter water-cooled discharge tube and longitudinal electrodes, demonstrated an exit temperature drop of 15-20 K; while this was an encouraging result, it also was not as large a drop as needed and other post-discharge methods proved more effective. However, newer flat-plate rectangular designs may soon permit cooling of the discharge region to be tested with better effectiveness. Presently the discharge is air cooled.

Downstream of the discharge, air-cooling of the flow tubes can remove a considerable amount of heat. The helium carrier gas in the flow does an excellent job of conducting heat to the quartz or Pyrex flow tube walls. The thermal conductivity of helium is 0.21 W/m-K compared to 0.04 W/m-K for oxygen. Presently, fans blowing high flow rate air are directed on the flow tubes in order to remove heat from the system. During operation, turning these fans on and off has a significant impact on the laser performance, demonstrating their simple yet valuable role.
The engineering solution that has worked best in our experimental setup is a water cooled or cryogenic heat exchanger downstream of the discharge, the focus of this section. Issues related to a heat exchanger can become complex and require effort to solve. Heat exchangers function by introducing a fluid to a substantially cooler surface with preferentially a very great surface area to maximize heat transfer. In the case of ElectricOIL, increases in surface area can result in increased deactivation of the desired O$_2$(a) state, thereby reducing lasing performance. From the standpoint of preserving O$_2$(a), minimizing surface area between the discharge and resonator is ideal. Clearly the goals of maximizing heat removal and minimizing O$_2$(a) loss conflict in a real apparatus. However, since reducing the flow temperature ultimately reduces the O$_2$(a) threshold, so long as the usable concentration of O$_2$(a) above threshold increases faster than the concentration lost due to wall deactivation, significant benefit can be obtained. It is also well known that some wall materials deactivate O$_2$(a) at a slower rate than other materials, thus investigations into possible wall coatings may also help mitigate the extent to which O$_2$(a) is deactivated.

Downstream of the heat exchanger, an inert cold gas can be injected into the primary flow prior to the resonator to reduce the flow temperature. This method of temperature reduction has been quite effective in our lab experiments and has played an important role in achieving better performance. On the downside, the added gas increases the system pressure, which in turn drops the O$_2$(a) yield and concentration. Ideally, a highly effective design for a heat exchanger will be found such that the addition of cold gas can be substantially reduced or eliminated.

### 3.1 Heat Exchanger Experimental Setup

The experimental setup used for the heat exchanger investigation is illustrated in Figure 5. A flow comprising 20 mmols/s of oxygen, 66 mmols/s of helium, and a small quantity of nitric oxide, on the order of 0.25 mmols/s, is premixed and divided between two ¾” OD quartz tubes. The gas flow in each tube travels between two 10” long thin-plate copper electrodes touching the outside of each quartz tube. The pair of transverse discharges are driven in parallel using a 13.56 MHz ENI OEM-25A RF power supply. The gas temperature at the end of the discharge region, just prior to the heat exchanger, is determined from the O$_2$(b) rotational spectral emission at 762 nm using an Apogee E47 CCD camera coupled to a Roper Scientific/Acton Research 150-mm monochromator. The detector is repositioned at each of the diagnostic blocks to take additional O$_2$(b) emission immediately downstream of the heat exchanger and considerably farther downstream of the heat exchanger where the gas has diffused to become more uniform. A Princeton Instruments Optical Multi-channel Analyzer (OMA-V, 1024-element InGaAs array) with a 0.3 m Acton monochrometer and a 600 g/mm grating blazed at 1.2 µm was used for measurements of O$_2$(a) at 1268 nm. Measurements of O$_2$(a) were made exclusively at the 2nd downstream diagnostic block. The O$_2$ dissociation fraction was determined using NO$_2$* emission (air afterglow) at the second diagnostic block. The broadband emission of NO$_2$* was measured using a Hamamatsu R955 photomultiplier with a narrowband 580 nm filter and a 50 mm focal length collection lens; the O atom concentration (and equivalently the O$_2$ dissociation fraction) was determined from NO$_2$* using the method described by Piper [Piper, 1981].

![Figure 5: Experimental Setup](image_url)

The discharge gaseous output then enters the heat exchanger and passes through some number of small circular ducts, Fig. 6, in this case machined from ¾” OD aluminum rod stock, while 285 K tap water circulates the exterior jacket. The exterior geometry of the heat exchanger was selected based on the discharge geometry to which it interfaced, in this case ¾” OD quartz tubes. The concepts discussed herein can be easily applied to other discharge geometries (or other technologies requiring a heat exchanger). Thus far, five internal geometries have been constructed and tested as illustrated in Fig. 6.
Figure 6: Circular duct design configurations that were tested.

The gas exits the heat exchanger with a reduced temperature and diffuses into a 2” OD Pyrex tube. Ideally, we would prefer to make measurements of both O$_2$(a) and O$_2$(b) at the upstream diagnostic block position to ascertain the performance of each heat exchanger configuration, however the NO$_2^*$ broadband emission at this location, and the complex geometry of the diffusing gas makes measurements immediately downstream of the heat exchanger highly convoluted. The 18” long Pyrex tube, though, provides sufficient distance for the NO$_2^*$ broadband emission to become insignificant compared with the O$_2$(a) and O$_2$(b) intensities as well as permitting the gas to fully diffuse to insure comparable flow uniformity between heat exchanger measurements. Using knowledge of the varying wall temperature on the Pyrex tube and measurement of the flow temperature at the 2$^{nd}$ diagnostic block, the temperatures presented herein have been extrapolated back to the 1$^{st}$ diagnostic block position. The O$_2$(a) and O$_2$ dissociation fraction data (derived from O atom concentration measurements) presented here is collected at the 2$^{nd}$ diagnostic block. No attempt has yet been made to extrapolate the data back to the heat exchanger exit at this time. In other words, while the O$_2$(a) and O$_2$ dissociation fraction data are of interest for their absolute magnitudes at the 1$^{st}$ diagnostic block, the relative differences between heat exchanger configurations can be assessed using data taken at the 2$^{nd}$ diagnostic block.

3.2 Heat Exchanger Experimental Results

Figure 7 shows that the O$_2$(a) yield as a function of discharge pressure does not vary much in the region of 30 to 60 Torr; this figure illustrates the relationship of O$_2$(a) production with pressure in a single ¼” OD quartz tube at a fixed RF power of 800 Watts. This allows us to be fairly confident that for any significant differences in O$_2$(a) yield downstream of the heat exchanger that the probable cause will be the heat exchanger geometry and/or material, not discharge output.

Figure 7: O$_2$(a) yield versus discharge pressure for a 10” long discharge section. Discharge flow conditions are O$_2$:He:NO = 10:33:0.15 mmol/s, with a discharge power of 800 W. Results are calibrated to the discharge exit.

The geometry of each heat exchanger results in a unique pressure loss ΔP as illustrated in Fig. 8. Not surprisingly, the heat exchanger with the greatest number and smallest ducts results in the greatest pressure loss,
while a single thin-walled tube results in the least pressure loss. To ensure comparable data, the pressure in the downstream Pyrex tube was maintained between 42 and 43 Torr, while the discharge pressure was allowed to vary based on the heat exchanger. This provides the most pertinent information since in conjunction with the lasing cavity, the nozzle throat does in fact maintain the flow pressure downstream of the heat exchanger regardless of heat exchanger configuration (making allowances of course for a small pressure change resulting from the differences in temperature created by the efficiency of each heat exchanger). The variation in discharge temperature resulting from discharge pressure change with each heat exchanger configuration is shown to be small in Fig. 9. The variation in temperatures is essentially within the experimental error of the temperature measurement technique.

![Figure 8: Pressure drop versus RF power as a function of heat exchanger configuration.](image)

![Figure 9: Heat exchanger input temperature (approximately the same as the discharge exit temperature) versus RF power.](image)

Figure 10 illustrates the expected result that an increase in surface area and decrease in diffusion distance to the wall results in an improvement in temperature reduction. Alternatively, the change in temperature, rather than the absolute temperature, is plotted in Figure 11. Interestingly, the 7-duct layout and 16-duct layout provide very similar results. It is likely that a heat transfer limit is being reached due to the increasingly small temperature gradient between the heat exchanger exit temperature and the coolant temperature, and the result of a relatively long conduction distance from the central duct walls to the exterior wall interfacing with the circulating coolant. A recommended next step is to reduce the coolant temperature to cryogenic levels to see how low of a flow temperature can be reached. Further decreasing the flow temperature in the heat exchanger will increase the residence time of the gas in the heat exchanger (due to a decrease in flow velocity as the flow temperature drops), but it will probably result in minimal change to the $O_2(a)$ loss. In other words, decreasing the coolant temperature provides considerable room for improvement without risking a significant increase in $O_2(a)$ deactivation. Theoretical modeling currently in progress will help narrow the range of possible layouts to test in the search for a near optimal configuration.
Figure 12 demonstrates that no drastic variation occurs in the O$_2$(a) yield as a result of increasing the temperature reduction efficiency of the heat exchanger. At worst, the yield drops from around 9.4% to 8.2% (Fig. 12 at 2000 W), but the addition of the heat exchanger drops the gas temperature by around 190 K (Fig. 11 at 2000 W). In subsequent gain and laser experiments (Sect. IV), we always found that this trade-off has proven to strongly favor using the heat exchangers with the 7- and 16-duct layouts; in other words, dropping the gas temperature significantly outweighed a 1% loss in O$_2$(a) yield. Figure 13 show that the heat exchanger is not only useful for removing heat from the flow but also reducing the O$_2$ dissociation fraction. Because the heat exchanger increases the pressure upstream of the heat exchanger as well as the pressure throughout its own ducts, determining what mechanism is ultimately responsible for the greater part of the reduction in O-atoms will require additional modeling and testing. These additional data will address the question of how much of the reduction in O-atoms is strictly the result of recombination on the heat exchanger walls versus how much is due to increased recombination in the flow as pressure increases.

Returning to the O$_2$(a) yield presented in Fig. 12, it makes sense that the O$_2$(a) yield increases slightly at the second diagnostic block when changing from the thin-walled tube to the 4-duct layout. The 4-duct layout provides a
significant reduction in O-atom concentration in the flow, which in turn means that less O$_2$(a) decay as a result of collisions with O-atoms is occurring in the flow between the two diagnostic blocks. In short, more of the O$_2$(a) leaving the heat exchanger is surviving to reach the second diagnostic block than would occur with the thin-walled tube, which has an exit flow with considerably more O-atoms. Going from the 4-duct layout to the 7-duct or 16-duct layout results in only moderately fewer O-atoms in the flow, while the geometry of those heat exchangers results in greater deactivation of O$_2$(a). Thus, we begin to see how design of the heat exchanger for an ElectricOIL system is governed by numerous variables, including variables as easily overlooked as the residence time from the heat exchanger exit to the resonator.

IV. Gain and Laser Enhancement Experiments and Modeling

As we acquire more understanding of the complex ElectricOIL system, including the species output from the discharge and the resulting downstream kinetics, we have implemented a logical progression of knowledge into evolving generations of the ElectricOIL system to increase the gain and laser power output levels. Previous results have been presented from third and fourth generation laser cavities, “Cav3” [Benavides, 2008] and “Cav4” [Zimmerman, 2008b]. Zimmerman et al. [Zimmerman, 2008b] investigated the use of two parallel primary discharges at higher total flow rates and pressure. The O$_2$(^1Δ) was produced by two parallel capacitive 13.56 MHz electric discharges sustained in an O$_2$-He-NO gas mixture, and I* was then pumped using energy transferred from O$_2$(^3Δ); the electrode gaps in the primary discharges were transverse to the flow direction, and the discharges were matched in parallel from a single power supply. Both of the plasma zones filled the transverse gap and were approximately 1.6 cm diameter and 25 cm long (the outside diameter of each of these discharge tubes was 1.9 cm). In prior “Cav3” experiments, a single 4.9 cm diameter plasma zone was utilized (discharge tube with outside diameter of 5.1 cm). The change to smaller diameter discharge tubes was motivated by a detailed series of work summarized in Braginsky et al. [Braginsky, 2007] in which they demonstrated that smaller diameter tubes had substantially increased discharge stability at higher pressure while maintaining significant O$_2$(^1Δ) yields. More information on the performance of the transverse electric discharge sustained in an O$_2$-He-NO gas mixture used in those two-tube experiments, as well as those presented herein, can be found in Woodard et al. [Woodard, 2008] and Zimmerman et al. [Zimmerman, 2008a]. The primary advantages to this discharge arrangement were (i) the ability to take advantage of the improved performance of the smaller discharge tubes, (ii) higher total flow rates of the gases thereby increasing the number densities of the excited species, and (iii) distribution of the higher total flow through a higher number of small tubes allowed discharge pressure of 40-55 Torr rather than pressures > 75 Torr.

The newest results were obtained with a fifth generation laser cavity, “Cav5”, Fig. 14, that includes four ¼” discharges feeding into a single 5 cm gain length laser cavity, as well as compact heat exchangers (Sect. III) that reduce both the flow temperature and the concentration of oxygen atoms. The Cav5 experiments to date were run without the addition of a secondary rf discharge [Benavides, 2008] to pre-dissociate the molecular iodine.

Fig. 14: Photograph of the fifth generation “Cav5” laser cavity experimental apparatus driven by four ¾” discharge tubes.

The flow conditions for these gain and laser power experiments with the quad primary discharges are 30.0 mmol/s of O$_2$ which is diluted with 100.0 mmol/s of He and $\approx$ 0.20 mmol/s of NO. A secondary stream of $\approx$ 0.30 mmol/s of I$_2$ with 55.0 mmol/s of secondary He diluent was injected 27.8 cm downstream from the exit of the primary discharge. A tertiary flow of 240 mmol/s of cold N$_2$ gas (≈83 K) was injected further downstream to lower
the temperature. The pressures in the discharge section, in the subsonic section downstream of the heat exchanger (with the 7-hole configuration, Fig. 6), and in the supersonic diagnostic cavity were 53.0 Torr, 44.3 Torr, and 4.7 Torr, respectively. Measurements near the exit of the discharge from the \( \text{O}_2(\text{A}) \) and \( \text{O}_2(\text{b}\Sigma) \) spectra indicated an \( \text{O}_2(\text{A}) \) yield of \( \approx 11\% \) and a gas temperature of \( \approx 570 \text{ K} \) for these flow conditions at 650 W of rf power in each of the four discharges (a total of 2600 W).

Gain was measured for the above flow conditions at a total of 2600 W of primary rf discharge power. Figure 15 shows the gain at line center, which peaks at 0.22% cm\(^{-1}\) with the quad 1.9 cm diameter primary discharges. For comparison, the best gain previously observed in our system of 0.17% cm\(^{-1}\), using dual 1.9 cm diameter primary discharges. The lineshape indicates a temperature of \( \approx 110 \text{ K} \).

Modeling simulations were performed for this case with the BLAZE-IV code [Palla, 2006; Palla, 2007]. BLAZE-IV is an end-to-end discharge through laser cavity model that includes electrodynamics for the discharge section and quasi-1D fluid equations with multi-stream mixing terms. Using the baseline mixing parameters established for the older Cav3 hardware, and simply making changes to the geometry and flow/discharge conditions that are appropriate for this Cav5 case, good agreement is found with the gain measurement, Fig. 16, as well as temperature and yield measurements, Fig. 17.

*Fig 15: Gain lineshape in the supersonic cavity as a function of probe beam scan frequency with quad 1.9 cm diameter discharges operating at 53 Torr (4.7 Torr in supersonic cavity).*

*Fig 16: BLAZE-IV modeling predictions of Cav5 gain from the \( I_2 \) injection location through the nozzle and into the supersonic laser cavity region.*

*Fig 17: BLAZE-IV modeling predictions of Cav5 yield and gas temperature from the start of the discharge section through the nozzle and into the supersonic laser cavity region.*
The laser resonator was subsequently installed around the 5 cm gain length supersonic cavity. Several different mirror combinations were used having different values of threshold gain $g_{th} = -\ln(r_1/r_2)/2L_g$, Table 1 and Fig. 18. For the above 53 Torr flow conditions, a total laser output power of 28.1 W was obtained, a 128% improvement to laser power relative to the 12.3 W result from [Zimmerman, 2008b]. The beam shape was rectangular with rounded corners and had a length of $\approx 4.4$ cm in the flow direction and a height of $\approx 2.5$ cm (the same dimensions as the clear aperture of the mirror mounts in the flow direction and the height of the nozzle at the center of the beam in the vertical direction). Note that it is possible to make estimates of the laser cavity yield (not shown for brevity) based upon this power data, knowledge of the flow rates, and equations found in Hager et al. [Hager, 1996]; these estimates are in reasonable agreement with the BLAZE-IV predictions of approximately 7% yield in the laser cavity region, Fig. 17.

### Table 1. Mirror combination sets used in test of ElectricOIL Cav5 quad-discharge tube configuration. Note: for simplicity, the listed values of reflectivity $r$ are based solely on transmission measurements and are herein assumed to be $r=1-t$.

<table>
<thead>
<tr>
<th>Set</th>
<th>Mirror 1</th>
<th>Mirror 2</th>
<th>$r_1$</th>
<th>$r_2$</th>
<th>$r_1r_2$</th>
<th>$g_0$ [cm$^{-1}$]</th>
<th>$P_{out,max}$ [W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0702-2</td>
<td>0801-1</td>
<td>0.999950</td>
<td>0.999293</td>
<td>0.999243</td>
<td>7.573x10$^{-5}$</td>
<td>26.5</td>
</tr>
<tr>
<td>2</td>
<td>0801-1</td>
<td>0803-1</td>
<td>0.999293</td>
<td>0.998837</td>
<td>0.998131</td>
<td>1.870x10$^{-4}$</td>
<td>28.1</td>
</tr>
<tr>
<td>3</td>
<td>0702-2</td>
<td>0802-1</td>
<td>0.999950</td>
<td>0.989620</td>
<td>0.989571</td>
<td>1.048x10$^{-3}$</td>
<td>22.3</td>
</tr>
<tr>
<td>4</td>
<td>0706-3</td>
<td>0802-1</td>
<td>0.999889</td>
<td>0.989620</td>
<td>0.989510</td>
<td>1.055x10$^{-3}$</td>
<td>23.2</td>
</tr>
<tr>
<td>5</td>
<td>0803-1</td>
<td>0802-1</td>
<td>0.998837</td>
<td>0.989620</td>
<td>0.988469</td>
<td>1.160x10$^{-3}$</td>
<td>19.7</td>
</tr>
</tbody>
</table>

![Graph showing laser power output as a function of mirror set](image)

**Fig 18:** ElectricOIL Cav5 laser power output (total outcoupled from both mirrors) as a function of mirror set listed in Table 1.

**V. Concluding Remarks**

Over the past five years of research and development, continual improvements in gain and lasing power have been obtained. The gain has risen from the initial demonstration of 0.002% cm$^{-1}$ by more than two orders of magnitude to 0.22% cm$^{-1}$, and similarly the outcoupled laser power has risen from 0.16 W to 28 W (with a 5 cm gain length cavity). We are obtaining $\approx 30\%$ energy coupling into the desired O$_2$(a) state, but significant improvements in understanding the role of components of plasma generated “active oxygen” still need to be made in regards to laser extraction of this energy. While O atoms permit rapid dissociation of the I$_2$ molecule, they appear to be major problem for energy extraction (as they also act as a quencher) and alternate I$_2$ dissociation schemes need be investigated.

Geometry is a critical parameter for the production of high O$_2$(a) yields from transverse RF discharges at moderate pressures (40-60 Torr). The discharge that effectively makes O$_2$(a) at 20 Torr does not fill the electrode volume as the pressure increases, and this effect leads to decreased yield. By shortening the gap between the electrodes and lengthening the discharge region, the discharge fills the volume at higher pressures and more effectively creates O$_2$(a) at those pressures. We have found significant improvements (30% rise) in yield by going from a discharge length of 10" to 33". Future work will exploit this effect along with other geometry enhancements to create a discharge capable of producing high yields with high oxygen flow rates to produce a flow with high O$_2$(a) power. The improvement of temperature reduction techniques has been critical towards ElectricOIL’s performance enhancements. The post-discharge tube heat exchanger study and experiments proved to be effective in reducing the discharge flow temperature, and additional reductions are planned.
The implementation of a combination of multiple smaller diameter discharge tubes plus an efficient post-discharge tube heat exchanger has permitted us to expand the flow conditions of the ElectricOIL device to higher pressures and flow rates. The use of longer discharge regions with a small discharge gap is showing promising results, and will be implemented in future gain/laser testing. A continued expansion of the operating envelope to higher flow conditions, pressures, and gain length of the laser cavity, plus further integration of other performance enhancing components are expected to provide increases to the gain and laser power.

Acknowledgments

This work was supported by DARPA prime contract HR0011-07-C-0054 on a subcontract from Physical Sciences Inc. (PSI). Additionally, J. Zimmerman was supported by the Directed Energy Professional Society (DEPS) Scholarship Program. The authors gratefully acknowledge the contributions of: W.T. Rawlins, S.J. Davis, and S. Lee (PSI), and M. Heaven (Emory Univ.).

References


